
Copyright © 2018 by Partek Incorporated. All Rights Reserved. Reproduction of this material without express written consent from Partek
Incorporated is strictly prohibited.

Kubernetes
Below are the yaml documents which describe the bare minimum infrastructure needed for a functional Flow server. It is best to start with a single-node
proof of concept deployment. Once that works, the deployment can be extended to multi-node with elastic worker allocation. Each section is explained
below.

The Flow headnode pod
apiVersion: v1

: Podkind
:metadata

 : flowheadnodename
 : partek-flownamespace
 :labels
 : flowheadnodeapp.kubernetes.io/name
 : devdeployment

:spec
 :securityContext
 : 1000fsGroup
 :containers
 - : flowheadnodename
 : xxxxxxxxxxxx.dkr.ecr.us-west-2.amazonaws.com/partek-flow:current-23.0809.22image
 :resources
 :requests
 : memory "16Gi"

: 8 cpu
 :env
 - : PARTEKLM_LICENSE_FILEname
 : value "@flexlmserver"

- : PARTEK_COMMON_NO_TOTAL_LIMITS name
 : value "1"

- : CATALINA_OPTS name
 : value "-DFLOW_WORKER_MEMORY_MB=1024 -DFLOW_WORKER_CORES=2 -Djavax.net.ssl.trustStore=/etc/flowconfig
/cacerts -Xmx14g"

: volumeMounts
 - : home-flowname
 : /home/flowmountPath
 - : flowconfigname
 : truereadOnly
 : mountPath "/etc/flowconfig"

: volumes
 - : home-flowname
 :persistentVolumeClaim
 : partek-flow-pvcclaimName
 - : flowconfigname
 :secret
 : flowconfigsecretName

Pod metadata

On a kubernetes cluster, all Flow deployments are placed in their own namespace, for example . The label : partek-flownamespace app.kubernetes.io/name
 allows binding of a service or used to target other kubernetes infrastructure to this headnode pod. The label allows : flowheadnode : devdeployment

running multiple Flow instances in this namespace (dev, tst, uat, prd, etc) if needed and allows workers to connect to the correct headnode. For stronger
isolation, running each Flow instance in its own namespace is optimal.

Data storage

The Flow docker image requires 1) a writable volume mounted to 2) This volume needs to be readable and writable by 3) /home/flow UID:GID 1000:1000
For a multi-node setup, this volume needs to be cross mounted to all worker pods. In this case, the persistent volume would be backed by some network
storage device such as EFS, NFS, or a mounted FileGateway.

This section achieves goal 2)

spec:
: securityContext

: 1000 fsGroup

The volume is used to override behavior for custom Flow builds and custom integrations. It is generally not needed for vanilla deployments. flowconfig

The Flow docker :image

Copyright © 2018 by Partek Incorporated. All Rights Reserved. Reproduction of this material without express written consent from Partek
Incorporated is strictly prohibited.

Partek Flow is shipped as a single docker image containing all necessary dependencies. The same image is used for worker nodes. Most deployment-
related configuration is set as environment variables. Auxiliary images are available for additional supporting infrastructure, such as flexlm and worker
allocator images.

Official Partek Flow images can be found on our release notes page: Release Notes
The image tags assume the format: registry.partek.com/rtw:YY.MMMM.build
New rtw images are generally released several times a month.
The image in the example above references a ECR. It is highly recommended that the target image from registry.partek.com be loaded into your private
ECR. Image pulls will be much faster from AWS - this reduces the time to dynamically allocate workers. It also removes a single point of failure - if registry.
partek.com were down it would impact your ability to launch new workers on demand.

Flow headnode resource request

Partek Flow uses the head node to handle all interactive data visualization. Additional CPU resources are needed for this, the more the better and 8 is a
good place to start. As for memory, we recommend 8 to 16 GiB. Resource limits are not included here, but are set to large values globally:

This allows us to create pods with only a request set, but not a limit set. Further tuning is recommended.
apiVersion: v1

: LimitRangekind
:metadata

 : partek-flow-limit-rangename
:spec

 :limits
 - :max
 : 512Gimemory
 : 64cpu
 :default
 : 512Gimemory
 : 64cpu
 :defaultRequest
 : 4Gimemory
 : 2cpu
 : Containertype

Relevant Flow headnode environment variables

PARTEKLM_LICENSE_FILE

Partek Flow uses FlexLM for licensing. Currently we do not offer or have implemented any alternative. Values for this environment variable can be:

@flexlmserveraddress - an external flexlm server. We provide a Partek specific container image and detail a kubernetes deployment for this below. This
license server can also live outside the kubernetes cluster - the only requirement being that it is network accessible.

 - Use this path exactly. This path is internal to the headnode container and is persisted on a mounted PVC. /home/flow/.partekflow/license/Partek.lic

Unfortunately, FlexLM is MAC address based and does not quite fit in with modern containerized deployments. There is no straightforward or native way
for kubernetes to set the MAC address upon pod/container creation, so using a license file on the flowheadnode pod (/home/flow/.partekflow/license/Partek.

) could be problematic (but not impossible). In further examples below, we provide a custom FlexLM container that can be instantiated as a pod/service. lic
This works by creating a new network interface with the requested MAC address inside the FlexLM pod.

PARTEK_COMMON_NO_TOTAL_LIMITS

Please leave this set at "1". Partek Flow need not enforce any limits as that is the responsibility of kubernetes. Setting this to anything else may result in
Partek executables hanging.

CATALINA_OPTS

This is a hodgepodge of Java/Tomcat options. Parts of interest:

-DFLOW_WORKER_MEMORY_MB=1024 -DFLOW_WORKER_CORES=2 - It is possible for the Flow headnode to execute jobs locally in addition to
dispatching them to remote workers. These two options set resource limits on the Flow internal worker to prevent resource contention with the Flow server.
If remote workers are not used and this remains a single-node deployment, meaning ALL jobs will execute on the internal worker, then it is best to remove
the CPU limit (and only set equal to the kubernetes memory resource request. -DFLOW_WORKER_CORES) -DFLOW_WORKER_MEMORY_MB

-Djavax.net.ssl.trustStore=/etc/flowconfig/cacerts - If Flow connects to a corporate LDAP server for authentication, it will need to trust the LDAP certificates.

-Xmx14g - JVM heap size. If the internal worker is not used, set this to be a little less than the kubernetes memory resource request. If the internal worker
is an use, and the intent is to stay with a single-node deployment, then set this to be ~ 25% of the kubernetes memory resource request, but no less than ~
4 GiB.

The Flow headnode service definition

https://documentation.partek.com/display/FLOWDOC/Release+Notes

Copyright © 2018 by Partek Incorporated. All Rights Reserved. Reproduction of this material without express written consent from Partek
Incorporated is strictly prohibited.

apiVersion: v1
: Servicekind

:metadata
 : flowheadnodename

:spec
 : ClusterIPtype
 :ports
 - : 80port
 : 8080targetPort
 : TCPprotocol
 : httpname
 - : 2552port
 : 2552targetPort
 : TCPprotocol
 : akkaname
 - : 8443port
 : 8443targetPort
 : TCPprotocol
 : licensingname
 :selector
 : flowheadnodeapp.kubernetes.io/name

The flowheadnode service is needed 1) so that workers have a DNS name () to connect to when they start and 2) so that we can attach an flowheadnode
ingress route to make the Flow web interface accessible to end users. The selector is what binds this to the : flowheadnodeapp.kubernetes.io/name
flowheadnode pod.

80:8080 - Users interact with Flow entirely over a web browser
2552:2552 - Workers communicate with the Flow server over port 2552
8443:8443 - Partek executed binaries connect back to the Flow server over port 8443 to do license checks

Ingress to flowheadnode
apiVersion: networking.k8s.io/v1

: Ingresskind
:metadata

 : flowheadnodename
 :annotations
 : kubernetes.io/ingress.class "nginx"

: nginx.ingress.kubernetes.io/force-ssl-redirect "true"
:spec

 :rules
 - : flow.dev-devsvc.domain.comhost
 :http
 :paths
 - : /path
 : PrefixpathType
 :backend
 :service
 : flowheadnodename
 :port
 : 80number

This provides external users HTTPS access to Flow at Your details will vary. This is where we bind to the : flow.dev-devsvc.domain.comhost flowheadnode
service.

The flexlm service pod

Copyright © 2018 by Partek Incorporated. All Rights Reserved. Reproduction of this material without express written consent from Partek
Incorporated is strictly prohibited.

On a NEW deployment, you need to exec into this pod and add the license file
to /usr/local/flexlm/licenses
After a license file is present, the flexlm daemon will start automatically

apiVersion: v1
: PersistentVolumeClaimkind

:metadata
 : flexlmserver-pvcname

:spec
 :accessModes
 - ReadWriteOnce
 :resources
 :requests
 : 10Gi storage # flex.log is the only thing that slowly grows here

: gp2-ebs-sc storageClassName
 : FilesystemvolumeMode

: v1apiVersion
: Servicekind

:metadata
 : flexlmservername

:spec
 : ClusterIPtype
 :ports
 - : 27000port
 : 27000targetPort
 : TCPprotocol
 : flexmainname
 - : 27001port
 : 27001targetPort
 : TCPprotocol
 : flexvendorname
 :selector
 : flexlmserverapp.kubernetes.io/name

: v1apiVersion
: Podkind

:metadata
 : flexlmservername
 : partek-flownamespace
 :labels
 : flexlmserverapp.kubernetes.io/name

:spec
 :containers
 - : flexlmservername
 : public.ecr.aws/partek-flow/kube-flexlm-serverimage
 :ports
 - : 27000containerPort
 - : 27001containerPort
 :resources
 :limits
 : memory "256Mi"

: 1 cpu
 :securityContext
 :capabilities
 : []add "NET_ADMIN"
 :volumeMounts
 - : flexlmserver-pvcname
 : /usr/local/flexlm/licensesmountPath
 :volumes
 - : flexlmserver-pvcname
 :persistentVolumeClaim
 : flexlmserver-pvcclaimName

The yaml documents above will bring up a complete Partek-specific license server.

Note that the service name is . The flowheadnode pod connects to this license server via the PARTEKLM_LICENSE_FILE= enflexlmserver "@flexlmserver"
vironment variable.

You should deploy this flexlmserver first, since the flowheadnode will need it available in order to start in a licensed state.

Partek will send a Partek.lic file licensed to some random MAC address. When this license is (manually) written to , the pod will /usr/local/flexlm/licenses
continue execution by creating a new network interface using the MAC address in Partek.lic, then it will start the licensing service. This is why the NET_AD

 capability is added to this pod. MIN

The license from Partek must contain so the vendor port remains at 27001 in order to match the service definition above. VENDOR parteklm PORT=27001
Without this, this port is randomly set by FlexLM.

This image is currently available from but this may change in the future. public.ecr.aws/partek-flow/kube-flexlm-server

Copyright © 2018 by Partek Incorporated. All Rights Reserved. Reproduction of this material without express written consent from Partek
Incorporated is strictly prohibited.

	Kubernetes

