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Measures of Distance & Dissimilarity 

This section presents measures of distance and dissimilarity that can be used in 

analysis, which directly make use of the dissimilarity between objects such as K-

means clustering and hierarchical clustering analysis. 

 

Similarity measures increase as the similarity between objects increase, while 

dissimilarity measures decrease as the similarity increases. Since many pattern 

recognition algorithms traditionally use distance metrics (which measure 

dissimilarity between objects) Partek Flow converts similarity measures into 

dissimilarity measures so that they can be interchanged with distance metrics 

without having to modify the algorithms that use them. 

Distance Metrics 

Distance Metrics tell how far apart two vectors are in n-dimensional space. Formal 

definitions of distance functions and distance metrics can be found in a variety of 

texts on cluster analysis and topology. 

 

Let x and y denote two real vectors T

nxx ),...,( 1 and T

nyy ),...,( 1  (Spath 1980). A 

real-valued function d(x, y) is said to be a distance function if, and only if, the 

following three conditions are satisfied: 
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The distance function d(x, y) can further be considered a metric if and only if in 

addition to the above three conditions, the following two conditions are also 

satisfied: 

 

0),( dyxd =  if and only if x = y 

),(),(),( yzdzxdyxd +  for all nRzyx ,,  where 
nR is n-dimensional Euclidean 

space and dB0B is an arbitrary real number (usually 0).  

Euclidean  

The Euclidean distance between vectors x and y is given by 

 −=
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Euclidean distance is the default measure used in Partek. The Euclidean distance 

satisfies all conditions of a metric. 
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Average Euclidean  

The average Euclidean distance is the same as the Euclidean distance except that it 

is normalized by dividing by n : 


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Because dBavgEucB is a scaled version of dBeucB it will give the same results as dBeucB in 

many algorithms. The average Euclidean distance is preferred to the Euclidean 

distance when the data contains missing values because it does not tend to grow 

larger as the vector length grows and is better suited to measuring the distance 

between vectors, which may contain missing values (this assumes that the data has 

been standardized). The average Euclidean distance satisfies all conditions of a 

metric. 

Squared Euclidean  

The squared Euclidean distance between vectors x and y is given by 
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It is nearly identical to Euclidean distance. However since it does not compute 

square root, squared Euclidean is faster than Euclidean distance. 

Minkowski Distance 

The Minkowski distance is defined as the p P

th
P root of the sum of the absolute value 

of the differences of the vector elements raised to the power p and is therefore a 

generalization of the Euclidean distance: 
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Average Minkowski Distance 

Since the Minkowski distance is a generalization of the Euclidean distance, it is 

natural that you also provide an average Minkowski distance for the same reasons 

that you include the average Euclidean distance. The average Minkowski distance is 

the same as the Minkowski distance except that it is normalized by dividing by
p

n : 
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Mahalanobis Distance 

The Mahalanobis distance is used when you want to compensate for the fact that 

different variables may be measured on different scales:  

)()(),( 1 yxCyxyxd T

mahal −−= −  

where C is the covariance matrix of the entire data set. When C P

-1
P is the identity 

matrix, this metric is equivalent to the Euclidean distance. It should also be noted 

that models that make use of this distance must save CP

-1
P as part of the saved model. 
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Maximum Value  

The maximum value distance metric can be used when you only care how close two 

vectors are at their farthest point. For example, it can be used to measure the 

maximum deviation between two observations of the same phenomena. 
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 Minimum Value  

The minimum value distance function is used when you only care how close two 

vectors are at their closest point. For example, suppose two vectors contain 

measurements of altitude of the ground and a high power line. In this case you may 

only care how close the high power line is to the ground at its closest point. 
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Absolute Value  

Also known as the taxi cab distance, the absolute value distance metric is a special 

case of the Minkowski distance with p=1: 
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You can compute an average absolute value distance by using the average 

Minkowski distance metric and specifying p=1.  

Tanimoto  

The Tanimoto distance is used to see how similar two chemicals are. It does this by 

counting the number of chemical substructures or chemical groups they have in 

common: 
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Where yx t  is number of attributes possessed by both x and y 

The distance is given by the ratio between the number of groups that are occur in 

both, divided by this plus the number in only one, plus the number only in the other. 

The number that occurs in neither is ignored.  

Measures of Dissimilarity 

In addition to the distance metrics described above, Partek provides measures of 

dissimilarity. These measures tell how similar the shapes of the data profiles are. 

The first three are simple transformations of three measures of correlation between 

the vectors. The cosine dissimilarity is the cosine of the angle between the two 

vectors. Finally, other measures that were specifically designed to measure 

dissimilarity are presented. 

Pearson’s Dissimilarity 

Pearson’s dissimilarity is a transformation of the linear (Pearson’s r) correlation 

between two vectors.  
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Linear Correlation (Pearson’s r) 
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When used as a dissimilarity measure, it is rescaled to the interval [0,1] with 0 

indicating perfect similarity (perfect positive correlation) and one indicating perfect 

dissimilarity (perfect negative correlation). 
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where r is the linear correlation. 

Pearson’s Absolute Dissimilarity  

Pearson’s Absolute Value dissimilarity is a slight modification of Pearson’s 

dissimilarity. It is rescaled to the interval [0,1] with 0 indicating either maximum 

similarity or dissimilarity and 1 indicating uncorrelated. 
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where r is the linear correlation. 

Rank Dissimilarity 

Rank dissimilarity is a transformation of Spearman’s non-parametric rBsB correlation 

between two vectors and is called for when the data is ordinal.  

 

Correlation (Spearman’s Rank coefficient) 
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where RBiB is the rank of xBiB in the vector x, SBiB is the rank of yBi Bin the vector y. 

 

When used as a dissimilarity measure, it is rescaled to the interval [0,1] with 0 

indicating perfect similarity (perfect positive correlation) and 1 indicating perfect 

dissimilarity (perfect negative correlation). 
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where rBsB is Spearman’s rank order coefficient.  

Rank Absolute Dissimilarity 

Rank absolute value dissimilarity is a slight modification of Rank dissimilarity. 

When used as a dissimilarity measure, it is rescaled to the interval [0,1] with 0 

indicating either maximum similarity or dissimilarity and 1 indicating uncorrelated. 
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where rBsB is Spearman’s rank order coefficient.  

Kendall’s Dissimilarity 

Kendall’s dissimilarity is the third dissimilarity metric based on the correlation 

between the vectors and is computed by: 
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where   is Kendall’s Tau correlation. 

Kendall’s Tau 
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It is rescaled to the interval [0,1] with 0 indicating perfect similarity (perfect 

positive correlation) and one indicating perfect dissimilarity (perfect negative 

correlation).  

Kendall’s Absolute Dissimilarity 

Kendall’s absolute value dissimilarity is a slight modification of Kendall’s 

dissimilarity. When used as a dissimilarity measure, it is rescaled to the interval 

[0,1] with 0 indicating either maximum similarity or dissimilarity and 1 indicating 

uncorrelated. 

||1),(  −=yxd abs  

where   is Kendall’s Tau correlation.  

Coefficient of Shape Difference 

Created by Penrose, the coefficient of shape difference is defined in the range [0, ∞] 

and is a function of the average Euclidean distance. The shape difference ignores 

additive displacement and therefore gives similar results to the cosine dissimilarity 

and measures based on correlation. 
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where dBavgEucB(x,y) is Average Euclidean Distance and q(x,y) is given by: 

n

yx

yxq i

i

i

i  −

=),(   

Cosine Dissimilarity 

The cosine dissimilarity is based on the cosine coefficient cos(x,y) (defined in the 

interval [-1,1]): 
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The cosine coefficient measures the cosine of the angle formed by the vectors x and 

y. Convert cos(x,y) to a measure of dissimilarity in the interval [0,1] as follows: 
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Canberra Metric 

The Canberra metric is a dissimilarity measure defined on the interval [0,1] and 

satisfies all four conditions of a metric.  
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Bray-Curtis Coefficient 

The Bray-Curtis coefficient is a dissimilarity measure defined on the interval [0,1] 

and satisfies all four conditions of a metric. 
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