Introduction

This user guide will explain the different types of workflow that can be used to analyze methylation datasets.

Under the Partek[®] Methylation workflow there are three different sub-workflows (Figure 1) aimed at different types of data, but also different objectives. They are:

- 1. Illumina BeadArray Methylation
- 2. Next-Gen Sequencing Methylation
- 3. ChIP-Chip Methylation

Workflows Methylation	-
Methylation	×
 Methylation sub-workflows 	
Illumina BeadArray Methylation	
Next-Gen Sequencing Methylation	
ChIP-Chip Methylation	
Figure 1: Methylation sub-workflows	

We can categorize the methylation data into two categories: Next Generation Sequencing (NGS) methylation datasets, and methylation array datasets.

Next Generation Sequencing (NGS) Methylation Data

For NGS methylation data, the sub-workflow to use is "Next-Gen Sequencing Methylation". The workflow is shown in Figure 2, and is mainly used to analyze NGS methylation data from the MeDIP-seq (Methylated DNA Immunoprecipitation) assay, i.e. an assay to enrich methylated DNA sequences.

Figure 2: Next-Gen Sequencing Methylation Workflow

MeDIP-seq is a "pull-down" assay, therefore the "Next-Gen Sequencing Methylation" workflow is very much similar to peak detection in the ChIP-Seq workflow. In the "Peak Analysis" section you will find the function "Detect methylated regions" which is the same as peak detection; for further information, please refer to the ChIP-seq data analysis tutorial.

In addition, in the "Next-Gen Sequencing Methylation" workflow there is also an option for *Detecting differential methylation*. In order to detect regions of differential methylation, the genome is divided into non-overlapping windows of a specified window length. A scaled fold-change and a binomial p-value are then calculated for each window; differential methylation will be reported as significant if it meets the p-value cut-off. The dialog box for detecting differential methylated regions is shown in Figure 3.

Detection Regions of Differential Read Coverage The genome is divided into non-overlapping windows of the specified window window and reported as significant if it meets the p-value cut-off.	length. A scaled fold-change and a binomial p-value is calculated for each
amples to Compare	
Sample 1	Sample 2
hip	
nock	
	Add comparison Remove comparison
arameters	
Nindow Length: 10000 base pairs (bp)	
-value less than or equal to 0.001	
Count total reads in window	
Count maximum height of window	
sult file	

Figure 3: Dialog box for detecting differentially methylated region in "Next-Gen Sequencing Methylation" workflow

What shall I do if I have RRBS (Reduced Representation Bisulfite Sequencing) data?

If you have RRBS data and you would like to detect differentially methylated regions, you will need the "percentage of methylation" value for each of your samples. This percentage methylation value can be a single-site specific percentage methylation value, or a CpG island percentage methylation value. For Illumina data, you can get the percentage methylation value using Illumina CASAVA pipeline.

The percentage methylation value is in a text format and therefore you can import into Partek[®] as a text file (File > Import > Text (.csv .txt) for data analysis. Subsequently, use either the "Gene Expression" workflow or the "Illumina BeadArray Methylation" sub-workflow (under the Methylation workflow) to detect differentially methylated sites/regions.

Methylation Array Data

Illumina BeadArray Methylation

If you are analyzing an Illumina Infinium Methylation array you can simply follow the Partek[®] "Illumina BeadArray Methylation" workflow (Figure 4). This workflow is very similar to the "Gene Expression" workflow.

Note: For the import of Illumina Methylation Data you are advised to load a Partek[®] project following Illumina GenomeStudio export using the Partek Plugin. This Partek[®] project file consists of two spreadsheets: i) a beta value spreadsheet and ii) an intensity spreadsheet. The beta value spreadsheet contains the percentage methylation values, and this will be the spreadsheet used in the downstream analysis for detecting differentially methylated sites.

Figure 4: Illumina BeadArray Methylation workflow

Note: In order to load a project following Illumina GenomeStudio export, refer to: <u>http://www.partek.com/Tutorials/microarray/User_Guides/GenomeStudioMeth</u> <u>ylationPlugin.pdf</u>

I would like to summarize the single site percentage methylation value into a region percentage methylation value. How can I do that?

Assuming that you would like to summarize the single site percentage methylation value into a **CpG island** percentage methylation value, you will need the file specifying the genomic coordinates of the CpG island (typically a .bed file).

For example, if you are interested in looking at hg18 CpG islands, you can download the bed file from the UCSC site:

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cpgIslandExt.txt.gz

Unzip the file and import into Partek (refer to the "Import Region File" user guide).

After importing the region file you can now insert the average "methylation value" for the CpG island by right-clicking on the CpG island column header and then choosing "Insert Average" from the contextual menu (Figure 5).

🚸 Partek Gen	omics Suite - Version 6.11.1	029	- 3 (cp	gIslandExt.txt)		-	in the second	a manufacture of	ter Manual	A Base					- 0 X
<u>Eile Edit T</u>	ransform <u>V</u> iew <u>S</u> tat F <u>i</u> ll	ter	T <u>o</u> ols	<u>W</u> indow <u>C</u>	ustom <u>H</u> elp										
🗅 🥔 🖬 🗙	🖹 🖬 🖄 🏶 📓 🖌	2	I	Tile 🔹 🔝	2									Workflows	-
3 (moīsla	ndExt.txt)		Curren	t Selection 1249	87									Illumina BeadArray Methylation	х
4 (Infinium	MethylationDemo_Beta Values			1. Chromosome	2. Start	3. Stop	4.	Сору	6	7		8.	н	▼ Import	
5 (Infiniur	MethylationDemo_Intensity Va		1.	dr1	18598	19673	CpG: 116	Plot				21.6			
			2.	dr1	124987	125426	CpG: 30				13.7	13.7		Import Illumina Methylation Data	•
			3.	dr1	317653	318092	CpG: 29	Sort Ascend	ing			13.2		Add sample attributes Edit sample information Choose sample ID column	
			4.	dr 1	427014	428027	CpG: 84	Ell Column	ang			16.6			
			5.	dr1	439136	440407	CpG: 99	Split Column				15.6			
	6.		dr1	523082	523977	CpG: 94	Find / Repla	ce / Select			21				
			7.	dr1	534601	536512	CpG: 171	Eiter Indude				17.9	1	▶ QA/QC	
			8.	dhr 1	703847	704410	CpG: 60	Filter Exclud	e			21.3		Australia	
			9.	dr1	752279	753308	CnG: 115	Toront			-	22.4		 Analysis 	
			10	dr1	778726	779074	CpG: 28	Insert Avera	10e		-	16.1		Visualization	
			11	dr1	701838	792201	CpG: 24	Delete			-	13.2			
			12	dr1	795061	795491	CpG: 50	Fit Columns			-	23.3		Biological Interpretation	
			12	der 1	920557	920492	CoC: 92				-	17.0			
			10.	dir 1	025337	030702	Cp0: 05	Create List from Column Labels		els .	-	17.5	- 1		
			14.	011	034102	835746	CpG: 155	Create List With Occurrence Counts		-	19.5				
			15.	CULT .	844028	deama	CpG: 16	Properties	-		15.4				
			16.	dr1	848833	851495	CpG: 257					19.3			
			17.	chr1	859195	861735	CpG: 178	2540	178	1740		14			

Figure 5: Insert Average

In the dialogue box choose to add the column to the right of column 4. Get average from spreadsheet "beta value" and choose "mean value for all samples separately" (Figure 6).

Add Not	ws/columns	to spreads	ieer 5				
Add <u>R</u> ows	Add <u>C</u> olum	ns Add A	erage				
Add to the	e Right 🔻	of Column	4.				
Get avera	ige from sprea	adsheet	4 (Infinium)	MethylationDem	10_Beta Val	ues.txt)	
O Mean	of samples sig	nificant in re	gion				6
O Mean	of all samples						6
Mean	value for all s	amples separ	ately				6
					OK	Cancel	Apply

Figure 6: Insert the mean value for all samples separately

Partek Gen	omics Suite - Version 6.11	.1029	- 3 (cp	gIslandExt.txt *)							
ile <u>E</u> dit <u>T</u>	ransform <u>V</u> iew <u>S</u> tat	F <u>i</u> lter	T <u>o</u> ols	<u>W</u> indow <u>C</u>	ustom <u>H</u> elp						
) 🚅 🖬 🗙	🔯 🌆 🖄 🏶 🚳	<i>P</i> I	I H	Tile 🔹 🔝	2						
D (Gurron	Eclaction 2							
3 (cpg1siai 4 (Tofinium	MethylationDemo. Reta Valu	a Â	Curren	1.	2.	3.	4.	5.	6.	7.	8.
5 (Infinium	MethylationDemo_Deta valu			Chromosome	Start	Stop		Hela_1	variance Hela_	1 Raji_1	variance
5 (211111011	Incuryation Demo_Incursity		1.	chr1	18598	19673	CpG: 116	?	?	?	?
			2.	chr1	124987	125426	CpG: 30	?	?	2	?
			3.	chr 1	317653	318092	CpG: 29	?	?	?	?
			4.	chr1	427014	428027	CpG: 84	?	?	?	?
			5.	chr1	439136	440407	CpG: 99	?	?	?	?
			6.	chr1	523082	523977	CpG: 94	?	?	?	?
			7.	chr 1	534601	536512	CpG: 171	?	?	?	?
			8.	chr 1	703847	704410	CpG: 60	?	?	?	?
			9.	chr 1	752279	753308	CpG: 115	0.0372053	1.30804e-006	0.0917884	0.007334
			10.	chr1	778726	779074	CpG: 28	?	?	?	?
			11.	chr 1	791838	792201	CpG: 24	?	?	?	?
			12.	chr1	795061	795491	CpG: 50	?	?	?	?
			13.	chr1	829557	830482	CpG: 83	?	?	?	?
			14.	chr 1	834162	835746	CpG: 153	?	?	?	?
			15.	chr1	844628	844836	CpG: 16	?	?	?	?
			16.	chr1	848833	851495	CpG: 257	0.123813	0.0193018	0.907878	0.003488
			17.	chr1	859195	861735	CpG: 178	?	?	?	?
			18.	chr1	865593	868226	CpG: 246	?	?	?	?
			19.	chr1	876219	876465	CpG: 18	?	?	?	?
			20.	chr1	884176	892517	CpG: 615	0.300598	0.221894	0.409373	0.230753
			21.	chr1	896159	896401	CpG: 23	?	?	?	?
			22.	chr 1	902732	903016	CpG: 28	?	?	?	?
			23.	chr1	909589	909790	CpG: 15	?	?	?	?
			24.	chr1	923250	927273	CpG: 413	0.0368212	1.1307e-005	0.952127	0.001399
			25.	chr1	938533	938757	CpG: 19	0.0643345	0.00351576	0.0615502	1.92183e
		-	Rows:		35			•			·

The result will appear as below (Figure 7):

Figure 7: Inserted average methylation value for each CpG island in each sample

Please note that "?" appears for those CpG islands that do not contain any value in the beta-value spreadsheet. As there is more than 1 probe in each CpG island in the original spreadsheet, you will see not only the mean percentage methylation value, but also the variance of the percentage methylation value is added.

Note: To provide a more informative name to Column 4, right-click on the column header and rename as "CpG name".

ChIP-Chip Methylation

This workflow is used to analyse methylation arrays based on affinity pull down assays, i.e. MeDIP (Methylated DNA Immunoprecipitation). Therefore, instead of detecting differentially methylated regions, the workflow looks for enriched methylated region.

The "ChIP-Chip Methylation" workflow is the same as the "Tiling" workflow, therefore please refer to the "Tiling" workflow tutorial for further information.

Figure 8: ChIP-Chip Methylation Workflow

End of User Guide

This is the end of the user guide. If you need additional assistance, you may call our technical support staff at +1-314-878-2329 or email <u>support@partek.com</u>.

Copyright © 2011 by Partek Incorporated. All Rights Reserved. Reproduction of this material without expressed written consent from Partek Incorporated is strictly prohibited.