Analysis of a Tiling Regulation Study in Partek[®] Genomics Suite[®] 6.6

The example data set used in this tutorial consists of 6 technical replicates from the same human cell line, 3 are SP1 treated, and 3 are non-specific antibody (Ab) negative controls. This experiment was performed using Affymetrix GeneChip[®] Human Promoter Tiling Arrays.

This tutorial will illustrate how to:

- Import and normalize data from Human Promoter Tiling CEL files
- Normalize the treated samples to the control samples
- Statistically and visually identify regions of binding on the genome
- Generate list of genes in the binding regions

Note: It is recommended that you go through **Chapter 6 The Pattern Visualization System®** in the *Partek On-line Help* before going through this tutorial if you have not done so. In addition, this tutorial covers specific information; for general information covering a variety of subjects, see the *Partek On-line Help*.

Importing Affymetrix[®] CEL Files

The data files for this experiment can be downloaded by selecting **Help** > **On-line Tutorials** from the Partek main menu. For this example, put the unzipped *Data* files (.CEL and other files) that are underneath the Tiling heading in the folder *C:\Partek Training Data**Tiling*\.

• Select **Tiling** from the *Workflows* drop down (Figure 1)

Figure 1: Choosing the pre-defined tiling workflow

- Select **Import Samples** (Figure 1)
- The *Load Tiling Data* dialog will appear, select **Import from Affymetrix CEL Files**, and select **OK**
- Select the **Browse** button to select the *C*:*Partek Training Data**Tiling* folder. By default, all the files with a .cel extension are selected (Figure 2)

Import Affymetrix CEL Files			×
CEL File Selection			
Specify Folder(s) that contain CEL files:			
C:\Partek Training Data\Tiling			Browse
	4	CEL Files to Process (0)	
4013176_Ab2.1.CEL 4013176_Ab2.2.CEL			
4013176_A02.3.CEL 4013176_Sp12.1.CEL			
4015176_sp12.2.CEL 4013176_sp12.3.CEL			
	Add File >		
	< Remove File		
Select All Refresh		Select All	
			Next > Cancel

Figure 2: Selecting the CEL files

- Click the **Add File** > button to move all the .cel files to the right panel. 6 files will be processed
- Click **Next** >, the dialog in Figure 3 will appear

Figure 3: Specifying the sample information file and output file

- In Figure 3, *C:\Partek Training Data\Tiling\SampleInfo.txt.fmt* should be automatically selected as the default *Sample Information File*. If it is not, click the first **Browse** button and choose the **SampleInfo.txt.fmt** file that comes with the tutorial data
- Name the *Output File* as **Tiling**. It is stored at the same location as the CEL files

The default method of normalization is predefined by Partek. It includes **Adjust for probe sequence, RMA Background Correction, Quantile Normalization, and Log (base 2) transformation**. You can view and change the algorithm settings by selecting the **Customize...** button.

• Select **Import** (Figure 3)

You might be asked to **Specify the Library File Root Folder** (Figure 4). You can select to use your current Affymetrix library folder, if you have already installed software from Affymetrix, such as Expression ConsoleTM, Genotyping ConsoleTM etc. Here *C:\Microarray Library* is used as the default library folder.

Figure 4: Specifying the default library root folder

Partek will download the needed library files if they could not be found in the default library folder and sub-folders (Figure 5). The file downloading is automated, which does not need the user's involvement unless you have firewall issue.

Figure 5: Configuring the Automated Library File Downloading

After all needed files are downloaded, the import will continue. Figure 6 shows the data have been imported into the Analytical Spreadsheet®. Six rows represent the 6 samples, ~4 million probes are on the columns, and the values of the probes are intensities in log base 2. Double clicking on an image allows for quality control inspection.

🤣 Partek Genomics Suite - 1 (Tiling)										3
File Edit Transform View Stat Fi	ilter Tools W	indow Custo	m Help							
🗋 🖻 🖬 🗙 🛛 🔯 📠 🔯 🍪 🛛 4	🔎 🔟 🎛 Tile	e 🔹 🔝 😰					Work	flows	Tiling	•
1 (Tiling)	Current Selection	4013176_Ab2.	1.CEL.pimg						Tiling	ĸ
	1. Original	2. Summarized	3. Difference	4. File Name	5. IP	6. Technical Replicate	7. Cel Lin		▼ Import	Î
	1.	$\frac{d-1}{d-1} = \frac{d-1}{d-1}$	al and	4013176_Ab2	Ab	1	HL-	plica	Import samples 🥩	
	2.			4013176_Ab2	Ab	2	HL		Add sample attributes	
	3.		3 Bach	4013176_Ab2	Ab	3	HL		Edit sample information	
	4.		新闻的	4013176_Sp1	Sp1	1	HL·		Choose sample ID column	
	5.		國際觀測	4013176_Sp1	Sp1	2	HL			E
	6.		國家院	4013176_Sp1	Sp1	3	HL		▼ QA/QC	
-									Plot sample histogram	
-					 				Principal components analysis (PCA)	
	_								Analysis	
< F	Rows: 6 (Cols: 4265960	•	1		1	•	Ŧ	Visualization	Ŧ
8									-	

Figure 6: Viewing the spreadsheet

During import, we had associated sample information with the genomic data, we don't need to add more sample attributes, so I will skip the Add Sample Attributes step.

Note: The library file of this chip is Hs_PromPR_v02-3_NCBIv36.bpmap when this tutorial is written, we need to make sure the genome information is correctly specified.

Choose File>Properties, make sure the species is Homo sapiens, click on Edit Genome to choose Genome version hg18

In the future, if there is new library file distributed, you need to change the genome version correspondingly.

Quality Assurance / Quality Control (QA/QC)

• Select **Principal Components Analysis** (**PCA**) in the *QA/QC* section of the *Workflows* panel to invoke a PCA plot on the 4 million probes. A PCA plot will appear (Figure 7)

Figure 7: Viewing the PCA plot

This plot shows that the treated samples cluster more tightly than the Antibody minus samples. You can hold your middle mouse button and drag to rotate the plot.

• Close the PCA plot

You can also click on the **Sample Histogram** to examine the data using histogram; this part is for you to practice on your own.

Detecting Regions of Binding using the Pre-defined Workflow

When you have paired samples that have a negative control coupled with the experimental antibody pull down, you need to perform two-way ANOVA (which is equivalent to paired sample t-Test) to find the difference between treatment vs. control on each probe, and then we will use MAT algorithm to detect regions showing enrichment in treatment.

• From the *Analysis* panel, select **ANOVA.** The message in Figure 8 will appear. You will need to specify a contrast of the two groups when you do ANOVA, so choose to include T statistics of the contrast in the result output. This is necessary for the next step in the analysis

🤣 Partek Hint	
In order to run Detect Enriched Regions you shou	d specify a contrast that includes the T statistic
🗍 Please don't shov	r me this hint again
Ок	

Figure 8: Reviewing the Partek hint to specify T statistics in the output

• After selecting **OK** to dismiss the reminder, the ANOVA dialog will be invoked. For this data set, select both factors located in the *Experimental Factors* panel, and move them to the *ANOVA Factor(s)* panel by selecting the **Add Factor** > button (Figure 9)

ANOVA of Spreadsheet 1			
Experimental Factor(s)		ANOVA Factor(s)	
5. IP 6. Technical Replicate	Add Factor >	5. IP 6. Technical Replicate	
	Add Interaction >		
	< Remove Factor		
Save Model Load Model		Contrast Cross Tabs	Advanced
Response Variable(s)			
All Response Variables			•
Specify Output File C:/Partek Training Da	ata/Tiling/ANOVAResults		Browse
		OK Cancel	Apply
(≥) 0%			

Figure 9: Configuring the ANOVA dialog

- Select the **Contrast** button on the *ANOVA* dialog to setup a contrast between *Sp1* and *Ab*
- Add **Sp1** to the *group1* panel to the right, and **Ab** to the *group2* panel to the right (Figure 10)

Configure of Spreadshee	t1		Data is already log transformed?
Select Factor/Interaction:	5. IP		▼ Yes Base 2.0 C No
Candidate Level(s) Ab Sp1	L (L	abel Group 1 Add Contrast Level > CREmove Contrast Level abel Group 2	
−Other Statistics □ Estimate □ Fratio □	T statistic 😨	Add Contrast Level > < Remove Contrast Level	Add Contrast 3 Add Combinations 2
Contrast Name		Factor/Interaction	Status Delete
4			v F
			OK Cancel

Figure 10: Setting up contrasts between Sp1 and Ab

- Select the **T** statistic check box
- Select the Add Contrast button to add it to the *Contrasts* panel at the bottom of the dialog (Figure 11). Note that sequence of steps is important.

Onfigure of Spreadsheet	L	8
Select Factor/Interaction:	5. IP	▼ Tes Base 2.0 C No
Candidate Level(s) Ab Sp1	Label Add Contrast Level > Cabel Add Contrast Level Label Add Contrast Level Cabel Add Contrast Level Cabel	Add Contrast 2 Add Combinations 2
Sp1 vs. Ab	5. IP	OK Delete
<u>د</u>		> OK Cancel

Figure 11: Adding the contrast to the Contrast panel

- Select **OK**
- Select **OK** again to run the ANOVA

In the resulting spreadsheet, each row is a probe, and the columns contain the ANOVA results, like p-value, fold change, T statistic, etc. (Figure 12). When the T statistic value is positive, the SP1 group has higher average intensity than the Ab group. When the T statistic is negative, the SP1 group has lower average intensity than that of the Ab group.

🤣 Partek Genomics Suite - 1/ANOVA-2way (ANC	VAResu	ilts *)											
File Edit Transform View Stat Filter To	ols Wi	indow Custom	Help										
D 🚘 🖬 🗙 🔯 🌆 🔯 🔗 🔟	🗄 Tile	• • 🔝 😰											
	Curren	t Selection 30955	93										
ANOVA-2way (ANOVAResults) *		1. Column #	2. Column ID	3. p-value(IP)	4. p-value(Technic al Replicate)	5. p-value(Sp1 vs. Ab)	6. Ratio(Sp1vs. Ab)	7. Fold-Change(Sp 1 vs. Ab)	8. Fold-Change(Sp 1 vs. Ab)	9. T(Sp1 vs. Ab)	10. F(IP)	11. SS(IP)	12. F(Technical Replicate)
	1.	3095593	chr 4. 18730355	2.96069e-008	2.70284e-007	2.96069e-008	0.765172	-1.3069	Sp1 down vs Ab	-5811.71	3.37759e+007	0.223661	3.69981e+0
	2.	517026	chr 10.8940845	2.23258e-007	7.15088e-006	2.23258e-007	1.75585	1.75585	Sp1 up vs Ab	2116.39	4.47912e+006	0.989433	139842
	3.	3610993	chr7.63667054	4.05814e-007	5.39114e-005	4.05814e-007	2.93735	2.93735	Sp1 up vs Ab	1569.77	2.46418e+006	3.62477	18548
	4.	856166	chr 11. 1258 179	4.25702e-007	6.12996e-006	4.25702e-007	1.22925	1.22925	Sp1 up vs Ab	1532.66	2.34906e+006	0.133003	163132
	5.	1295075	chr 14. 1042916	5.82461e-007	3.64797e-005	5.82461e-007	3.83231	3.83231	Sp1 up vs Ab	1310.29	1.71685e+006	5.635	27411.5
	6.	280 1680	chr 3. 10707082	6.02499e-007	0.229123	6.02499e-007	19.1291	19.1291	Sp1 up vs Ab	1288.31	1.65975e+006	27.192	3.36447
	7.	953038	chr 12.499 1854	6.94808e-007	9.9706e-005	6.94808e-007	31.4694	31.4694	Sp1 up vs Ab	1199.69	1.43924e+006	37.1391	10028.5
	8.	1943722	chr 19.7842542	7.26289e-007	0.00188911	7.26289e-007	97.4173	97.4173	Sp1 up vs Ab	1173.4	1.37686e+006	65.461	528.349
	9.	1987859	chr 19. 1942910	9.15557e-007	1.06294e-005	9.15557e-007	0.882489	-1.13316	Sp1 down vs Ab	-1045.1	1.09223e+006	0.0487887	94078
	10.	2086122	chr 19.5840970	1.17033e-006	4.391e-006	1.17033e-006	0.86259	-1.1593	Sp1 down vs Ab	-924.369	854458	0.0682149	227738
	11.	396496	chr 1.23281627	1.25938e-006	1.64039e-006	1.25938e-006	1.02111	1.02111	Sp1 up vs Ab	891.091	794043	0.00136267	609610
	12.	3927700	chr9.21683127	1.40724e-006	3.081e-005	1.40724e-006	1.09421	1.09421	Sp1 up vs Ab	842.976	710609	0.0253045	32456
	13.	1859941	chr 18. 1744172	1.45138e-006	5.11379e-007	1.45138e-006	0.968344	-1.03269	Sp1 down vs Ab	-830.059	688998	0.00323071	1.9555e+00
	14.	1978165	chr 19. 1739416	1.46452e-006	1.69572e-005	1.46452e-006	2.26677	2.26677	Sp1 up vs Ab	826.327	682816	2.09087	58971
	15.	1336436	chr 15.3851834	1.62398e-006	7.95566e-005	1.62398e-006	0.709721	-1.409	Sp1 down vs Ab	-784.71	615769	0.367057	12568.7
	16.	691070	chr 11.4887938	1.94148e-006	2.6793e-006	1.94148e-006	0.833333	-1.2	Sp1 down vs Ab	-717.683	515068	0.103782	373231
	17.	1024054	chr 12.9486731	2.18296e-006	1.32599e-005	2.18296e-006	1.07593	1.07593	Sp1 up vs Ab	676.826	458093	0.0167218	75414.2
	18.	1932520	chr 19.4293888	2.3365e-006	0.0150516	2.3365e-006	41.7414	41.7414	Sp1 up vs Ab	654.209	427989	43.4716	65.4382
	19.	3943341	chr9.35035424	2.40001e-006	3.22063e-006	2.40001e-006	0.955133	-1.04697	Sp1 down vs Ab	-645.495	416664	0.00657901	310497
	20.	12431	chr 1.2451576	2.63921e-006	0.00013855	2.63921e-006	1.0954	1.0954	Sp1 up vs Ab	615.548	378900	0.0259204	7216.61
	21.	3764532	chr8.12339389	3.39061e-006	0.00103708	3.39061e-006	67.6044	67.6044	Sp1 up vs Ab	543.075	294931	55.4322	963.246
	22.	1973603	chr 19. 159 1172	3.39853e-006	2.00236e-006	3.39853e-006	0.900612	-1.11036	Sp1 down vs Ab	-542.442	294244	0.0342114	499410
	23.	4093155	chrX.15534319	3.49527e-006	2.01991e-005	3.49527e-006	1.08141	1.08141	Sp1 up vs Ab	534.882	286099	0.0191261	49506.1
	24.	1990098	chr 19. 1980589	3.69429e-006	2.66311e-005	3.69429e-006	1.20551	1.20551	Sp1 up vs Ab	520.276	270687	0.109059	37549
	25.	458356	chr 10.3872639	3.88917e-006	1.84765e-005	3.88917e-006	0.7703	-1.2982	Sp1 down vs Ab	-507.073	257123	0.212638	54121.7
	26.	221015	chr 1. 14421884	4.01569e-006	0.00083917	4.01569e-006	10.5503	10.5503	Sp1 up vs Ab	499.021	249022	17.332	1190.65
	27.	1841512	chr 18.2642958	4.1267e-006	2.61211e-005	4.1267e-006	1.25464	1.25464	Sp1 up vs Ab	492.263	242323	0.16066	38282.2
	28.	2114448	chr 19.6379424	4.30902e-006	0.000988386	4.30902e-006	0.42802	-2.33634	Sp1 down vs Ab	-481.736	232070	2.24818	1010.75
	29.	1134641	chr 13.7680 198	4.39047e-006	0.000616043	4.39047e-006	1.12304	1.12304	Sp1 up vs Ab	477.247	227764	0.0420359	1622.26
	30.	868749	chr 12.643999	4.90505e-006	6.90985e-006	4.90505e-006	1.05643	1.05643	Sp1 up vs Ab	451.52	203870	0.00940714	144720
*	0	4365040 Color	10										

Figure 12: Viewing the ANOVA result spreadsheet

Next, the MAT algorithm will be used to detect enriched regions of the treatment.

• Select **Detect Enriched Regions** from the *Workflows* panel. Use the default settings and make sure the *Column to Test* contains the t-statistic from the ANOVA contrast result (Figure 13)

🤣 Detect Regio	ns of Significance	[- • ×
Data source			
Spreadsheet	1/ANOVA-2way		- 🛛
Column to test	9. T(Sp1 vs. Ab)		- 2
Peak Detection	Parameters		
P-value thresho	ld	0.01	2
Average ChIP fi	ragment length (bp).	600	2
Minimum numbe	r of probes in a region	10	2
Fraction of high excluded from	est and lowest probes calculation of mean.	0.10	2
Name of Outpu	t File		
Result file	enriched.txt		Browse
			,
		Restore Defaults OK	Cancel

Figure 13: Configuring the Detect Regions of Significance dialog

• The result will be displayed in a child spreadsheet (Figure 14)

Partok Gonomics Suite 1 (onriched (on)	riched tot)								
File Edit Transform View Stat Filt	ar Tools Wind	low Custom	Help						
			пер						
╵┏┍┓╲╶┊╩┉╚╬▓┊ど		M (1)							
🖃 1 (Tiling)	Current Selection	on chr1							
ANOVA-2way (ANOVAResults) * enriched (enriched.txt)		1. chromosome	2. region start	3. region end	4. length(bps)	5. probes in region	6. p-value(region)	7. Fraction of negatively enriched windows in region	8. MAT-score on T(Sp1 vs. Ab)
	1.	chr 1	553319	560597	7279	189	8.78812e-006	1	-43.0192
	2.	chr 1	7752582	7754153	1572	40	8.78812e-006	0	17.5026
	3.	chr 1	9893124	9894062	939	27	8.78812e-006	0	15.2702
	4.	chr 1	11532119	11534686	2568	70	8.78812e-006	1	-45.1685
	5.	chr 1	15723689	15725688	2000	44	8.78812e-006	0	22.3214
	6.	chr 1	16414820	16415712	893	24	8.78812e-006	0	24.9088
	7.	chr 1	26630993	26632294	1302	36	8.78812e-006	0	26.1632
	8.	chr 1	27560929	27565521	4593	124	8.78812e-006	0	43.3807
	9.	chr 1	31882539	31883911	1373	33	8.78812e-006	0	23.4199
	10.	chr 1	32310997	32313423	2427	63	8.78812e-006	0	28.5589
	11.	chr 1	32631257	32633779	2523	69	8.78812e-006	0	22.6351
	12.	chr 1	33273742	33275353	1612	40	8.78812e-006	0	18.4886
	13.	chr 1	33319956	33321766	1811	49	8.78812e-006	0	22.1613
	14.	chr 1	33417899	33419403	1505	31	8.78812e-006	0	27.3968
	15.	chr 1	33420113	33421565	1453	38	8.78812e-006	0	20.9364
	16.	chr 1	35268905	35270300	1396	38	8.78812e-006	0	23.1376
	17.	chr 1	37711551	37712878	1328	36	8.78812e-006	0	17.4931
	18.	chr 1	40610273	40612010	1738	39	8.78812e-006	0	26.0968
	19.	chr 1	40612327	40613643	1317	36	8.78812e-006	0	17.5427
	20.	chr 1	44914221	44916725	2505	71	8.78812e-006	0	17.4308
	21.	chr 1	45013128	45013937	810	23	8.78812e-006	0	17.1983
	22.	chr 1	45249115	45252339	3225	89	8.78812e-006	0	23.1989
	23.	chr 1	45821461	45822908	1448	41	8.78812e-006	0	20.7047
	24.	chr 1	45925427	45927132	1706	45	8.78812e-006	0	19.7224
	25.	chr 1	46485157	46487030	1874	45	8.78812e-006	0	29.2953
	26.	chr 1	46578668	46581107	2440	64	8.78812e-006	0	17.3366
	27.	chr 1	52228700	52229785	1086	26	8.78812e-006	0	52.0283
	28.	chr 1	52292933	52294728	1796	46	8.78812e-006	0	15.2311
· · · · · · · · · · · · · · · · · · ·	Rows: 21193	3 Cols: 8 🖌							

Figure 14: Viewing the result spreadsheet

In the result spreadsheet, each row represents a region of significant enrichment. The columns have information about the regions, such as genomic location, number of probes in the region, and statistics results.

The p-value of the region is the empirical p-value of the most significant MAT score included within this region.

The fraction of negatively enrichments of the region represents the proportion of false positive probes included in this region.

MAT score of the region is the maximum MAT score for this region. Positive score means SP1 (group 1 in the contrast) is enriched comparing to Ab (group 2 in the contrast).

- Make sure the enriched spreadsheet is the active spreadsheet, and select **Create region list** on the workflow
- Select the Specify New Criteria button on the left panel of List Creator

- Type A as name of the criteria
- Choose MAT-score(region) from the column drop-down list in the dialog
- Specify to include values greater than 0 only (Figure 15) since positive MAT score mean SP1 is enriched comparing to Ab

configure enter		
Data source	۵	
Spreadsheet	1/enriched (enriched.txt)	
Column	8. MAT-score on T(Sp1 vs. Ab)	
Configure criteria		
Include values	less than or equal to v 9,95	18923
Include values	greater than or equal to	12200
	L	2
		# pass 12200
		OK Cancel

Figure 15: Setting region list criteria to choose regions whose MAT score are positive

• Select **OK**, the criteria will appear on the Criteria panel of List Creator (Figure 16)

eory criteria	- Criteria			-
Specify New Criteria	Name	# pass	Criteria	-
mbine criteria	A	12200	MAT-score on I (Sp1 vs. Ab) greater than o	r et
Union (Or)				
) Intersection (And)				
Venn Diagram				
nage criteria				
Edit 🕄				
Remove				
· ·				

Figure 16: Select a criteria and save a list of the regions meet the criteria

- You can create multiple criteria, use Ctrl+left click on each one of them to select and click on Union or Intersection button to create new criteria
- Select one a criteria to highlight it, click **Save** to save a list that meet the selected criteria
- Make sure the criteria you want to use is checked, and select **OK** (Figure 17)

Figure 17: Naming the result list by using the default name

After selecting OK, a new spreadsheet will be created containing the regions that meet the criteria on the rows, which is a subset of the enriched result spreadsheet (Figure 18). The *List Creator* dialog can be closed at this point.

e <u>E</u> dit	<u>T</u> ransform	<u>/</u> iew <u>S</u> ta	t F <u>i</u> lter T <u>o</u>	ols <u>W</u> indow	Custom He	р				
i 🖉 🚔	× 🖺 🖪	🗠 🏶 😒	₽ 🔟	🗄 Tile 🔹	3 2					Workflows 1
- 1 (Tilin	ig)	Current	Selection 775	2582						
1 2 3	(ANOVAResults (enriched.txt) (A.txt)		1. chromosome	2. region start	3. region end	4. length(bps)	5. probes in region	6. p-value(region)	7. Fraction of negatively enriched windows in region	8. MAT-score on T(Sp1 vs. Ab)
		1.	chr1	7752582	7754153	1572	40	8.78812e-006	0	17.5026
		2.	chr 1	9893124	9894062	939	27	8.78812e-006	0	15.2702
		3.	chr 1	15723689	15725688	2000	44	8.78812e-006	0	22.3214
		4.	chr 1	16414820	16415712	893	24	8.78812e-006	0	24.9088
		5.	chr 1	26630993	26632294	1302	36	8.78812e-006	0	26.1632
		6.	chr 1	27560929	27565521	4593	124	8.78812e-006	0	43.3807
		7.	chr 1	31882539	31883911	1373	33	8.78812e-006	0	23.4199
		8.	chr 1	32310997	32313423	2427	63	8.78812e-006	0	28.5589
		9.	chr 1	32631257	32633779	2523	69	8.78812e-006	0	22.6351
		10.	chr 1	33273742	33275353	1612	40	8.78812e-006	0	18.4886
		11.	chr 1	33319956	33321766	1811	49	8.78812e-006	0	22.1613
		12.	chr 1	33417899	33419403	1505	31	8.78812e-006	0	27.3968
		13.	chr 1	33420113	33421565	1453	38	8.78812e-006	0	20.9364
		14.	chr 1	35268905	35270300	1396	38	8.78812e-006	0	23.1376
		15.	chr 1	37711551	37712878	1328	36	8.78812e-006	0	17.4931
		16.	chr 1	40610273	40612010	1738	39	8.78812e-006	0	26.0968
		17.	chr1	40612327	40613643	1317	36	8.78812e-006	0	17.5427
		18.	chr 1	44914221	44916725	2505	71	8.78812e-006	0	17.4308
		19.	chr 1	45013128	45013937	810	23	8.78812e-006	0	17.1983
		20.	chr 1	45249115	45252339	3225	89	8.78812e-006	0	23.1988
		21.	chr 1	45821461	45822908	1448	41	8.78812e-006	n	20.7047
	•	Rows:	12200 Cols	: 8 🖌						

Figure 18: Viewing the significant region list spreadsheet

- Select **Find overlapping genes** from the workflow while the newly created region spreadsheet is active (From File>Properties, make sure the genome build is correctly specified, hg18).
- In the *Output Overlapping Features* dialog select **RefSeq Transcripts 2014-04-29**. Select **OK** (download if needed) (Figure 19).

• A new spreadsheet (*gene-list*) will be created by annotating the enriched regions with RefSeq Transcripts with each row of the new spreadsheet corresponds to a transcript.

🤣 Output Overlapping Features	x
Report regions from the specified database weil-annotated set or sequences, including genomic UNA, transcripts, and proteins.	
Download required. Click OK to download the file	
RefSeq Transcripts - 2014-04-29	
The Reference Sequence (RefSeq) collection aims to provide a comprehensive, integrated, non-redundant, well-annotated set of sequences, including genomic DNA, transcripts, and proteins.	
Genomic Variants	
▼ miRNA	
MicroCosm Targets MicroCosm Targets (formerly miRBase Targets) is a web resource developed by the Enright Lab at the EMBL-EBI containing computationally predicted targets for microRNAs across many species. The miRNA sequences are obtained from the miRBase Sequence database and most genomic sequence from EnsEMBL. Download required. Click OK to download the file	Ш
Manage available annotations	-
Configure result	
Define promoter region as 5000 base pairs upstream and 3000 base pairs downstream from the transcription s	start site
Result file gene-list.txt	owse
ОКС	ancel

Figure 19: Configuring the Output Overlapping Features dialog

• Right click on the MAT-score column header, and select the **Sort Descending** option; this will place the most significant region on the top of the list (Figure 20)

e Edit Iransform View Stat Filter Tools Window Qustom Help											
€ 🖬 X 🔯 📠 🖄 🏶	8 👂 🔟	Tile 🕶	2					Workflov	ws Choose		
□ 1 (Tilng)											
1 (ANOVAResults) 2 (enriched.txt)		8. Percent overlap with	9. Percent overlap with	10. chromosome	11. region start	12. region end	13. length(bps)	14. probes in region	15. p-value(region)	16. Fraction of negatively	17. MAT-score on T(Sp1 vs. Ab)
🖃 3 (A.txt)	1.	0.901313	17.8756	chr8	25371627	25373170	1544	41	8.78812e-006	0	120.177
gene-list (gene-list	2.	1.5149	47.9922	chr8	25371627	25373170	1544	41	8.78812e-006	0	120.177
	3.	20.8138	23.6655	chr 19	59666309	59667994	1686	47	8.78812e-006	0	83.6014
	4.	31.5323	48.6199	chr9	129867502	129871450	3949	109	8.78812e-006	0	82.281
	5.	2.80321	29.1466	chr9	129867502	129871450	3949	109	8.78812e-006	0	82.281
	6.	100	58.4568	chr11	9437668	9439624	1957	55	8.78812e-006	0	73.6244
	7.	0.794837	27.44	chr11	9437668	9439624	1957	55	8.78812e-006	0	73.6244
	8.	0.794837	27.44	chr11	9437668	9439624	1957	55	8.78812e-006	0	73.6244
	9.	0.794837	27.44	chr11	9437668	9439624	1957	55	8.78812e-006	0	73.6244
	10.	6.83589	28.0707	chr4	4007151	4010431	3281	57	8.78812e-006	0	73.0388
	11.	48.0168	100	chr 19	7841651	7844398	2748	77	8.78812e-006	0	69.4084
	12.	48.0168	100	chr 19	7841651	7844398	2748	77	8.78812e-006	0	69.4084
	13.	0.495515	3.92157	chr 19	6375766	6377244	1479	42	8.78812e-006	0	67.0917
	14.	2.54391	13.3198	chr 19	6375766	6377244	1479	42	8.78812e-006	0	67.0917
	15.	6.06656	100	chr 19	2285230	2286835	1606	40	8.78812e-006	0	57.3942
	16.	6.06656	100	chr 19	2285230	2286835	1606	40	8.78812e-006	0	57.3942
	17.	20.0946	69.3031	chr 19	50085207	50088822	3616	93	8.78812e-006	0	57.0878
	18.	20.0946	69.3031	chr 19	50085207	50088822	3616	93	8.78812e-006	0	57.0878
	19.	20.0946	69.3031	chr 19	50085207	50088822	3616	93	8.78812e-006	0	57.0878
	20.	0.397667	23.9158	chr 18	58004703	58007077	2375	64	8.78812e-006	0	56.7373
	21.	0.397667	23.9158	chr 18	58004703	58007077	2375	64	8.78812e-006	0	56.7373
	22.	1.31349	66.2737	chr 18	58004703	58007077	2375	64	8.78812e-006	0	56.7373
	Rows: 3270-	4 Cols: 17									

Figure 20: Sorting the gene-list spreadsheet based on MAT score

Figure 20 shows the **Find overlapping genes** results. For a detailed look at the most significant region, right click on the first row header, and select **Browse to Location**.

Figure 21: Viewing the region view for a region on the top of the result spreadsheet

In the *Chromosome View* (Figure 21), the region selected in the first row of the gene-list spreadsheet is the left most one shown in the *Detected Regions* track.

Furthermore, the top track provides gene isoform information as present in the chosen transcriptome database (*RefSeq* in this example), followed by information retrieved from the *gene-list* spreadsheet, *enriched* spreadsheet, and the original data spreadsheet (*Tiling*), respectively. To help make this plot easier to understand, we will delete some tracks on the plot, since the gene-list track is redundant information, it shows the boundary of the transcript which is provided by the top two tracks (transcriptome database RefSeq track), we will remove it:

• Select **Regions (1/enriched/gene-list(gene-list.txt**)) in the list of tracks on the left (Figure 22)

<u>V</u> iew <u>W</u> indow	
ks	
Tracks	
RefSeq Transcripts - 2014-04-29 (hg18) (+)	
RefSeq Transcripts - 2014-04-29 (hg18) (-)	
Regions (1/3/gene-list (gene-list.txt))	
Regions (1/3 (A.txt))	
Heatmap (1 (Tiling))	
Cytoband (hg18)	
Genomic Label	
	•

Figure 22: Configuring the list of tracks

• Delete the *Regions (1/enriched/gene-list(gene-list.txt))* track by selecting the **Remove Track** button on the corresponding line; the dialog will look like in Figure 23

Figure 23: Configuring the list of tracks: After deleting the 3nd track, leave the tracks showing RefSeq transcripts, enriched regions, the heatmap of the samples, cytobands of the current chromosome and genomic coordinates (label)

- Select the **Heatmap** track (which is the third track now in the list of tracks), go to the **Labels** tab, set the *Sample label* drop-down list to point to the **IP** column of the top level spreadsheet, and select the **Label all samples** radio button.
- R Q dr cripts - 2014-04-29 (+) •|| | | | | | ⊢-D GNRH1 Ab Sp1 Sp1 25310.7KBps 25341.3KBps 25371.9KBps 25402[']5KBps 25433.2KBp Apply . 09-
- Select Apply

Figure 24: Viewing the promoter region and the genes

Figure 24 shows the region that is at the top of the *gene-list* spreadsheet (the leftmost one). The top track is the isoform track with RefSeq transcripts, and the second track shows regions detected as significant binding region. The 3rd track is the heap map of the six samples, and the bottom track is the chromosome cytoband with genomic coordinates.

End of Tutorial

This is the end of the tiling tutorial. If you need additional assistance with this data set, you can call our technical support staff at +1-314-878-2329 or email support@partek.com.